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Executive Summary

Regulating  the timing and volume of water released from storage reservoirs  (often referred

to as flow augmentation)  has become a central  mitigation  strategy  for improving  downstream

migration  conditions  for juvenile salmonids in the Snake River. The success  of the flow

augmentation, in turn, depends on releasing reservoir waters  when and where wild smolt will

benefit the most. This requires the ability to predict in real time the status  and trend in the

outmigration of listed  threatened and endangered stocks. This study  evaluated  the feasibility  and

the performance of two alternative statistical  algorithms to predict outmigration status of Snake

River wild spring chinook.

Using  historical  trends in PIT-tag  detections  of wild chinook smolt at Lower Granite Dam,

pattern recognition  techniques were developed to predict the percent of the run-to-date and days

to a specific percent  of the run. The statistical  methods are based on algorithms  that  smooth

historical  trends  in PIT-tag  arrivals  and a generalized least squares  decision criterion. The methods

were evaluated for 16 different  river runs of chinook, as well as composites over various river

basins.  A bootstrapping  approach across  historical  years provided the means to measure the accuracy

and precision  of predictions  and construct  approximate  interval  estimates.

The recommended predictors  have an average error rate across stocks  of fish and seasons of

&9.6% about the true percent of the run-to-date. The best performance was for Catherine  Creek

with an average error of +4.2%. The worst performance occurred at Big Creek with an average

error of +19.0%.  An interactive  graphical  analysis program written  in C-language for an X-Window@

environment has been developed to analyze outmigration  data for select stocks  of Snake River

spring  chinook.
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Three ecologically significant units (ESU) of Pacific salmon  have been designated  as either

threatened or endangered (T&E)  under the Endangered  Species  Act (ESA) in the Snake River Basin:

spring/summer chinook,  fall chinook, and sockeye salmon. The tributary  populations  of

spring/summer chinook reside primarily in the Salmon and Grande  Ronde drainages,  and Imnaha

River, all of which are situated  upstream  of Lower Granite  Dam. Additionally, a small population

resides in the Tucannon  River, which enters the Snake River  downstream  from Little  Goose  Dam

(Figure  1). Fall chinook  reside in the Snake River between Lower Granite and Hell’s Canyon

Dams. The sockeye reside in the uppermost  portion of the main Salmon  River in the Stanley Basin.

Except for the Tucannon  River population,  all others reside upstream from Lower Granite Dam

on the Snake River.

Regulating  the timing  and volume of water released from storage reservoirs  (often referred

to as flow augmentation)  has become a central  mitigation  strategy  for improving  downstream

migration  conditions  for juvenile salmonids in the Snake River. Threatened and endangered  salmon

stocks  have received increased  priority with regard to the timing of flow augmentation.  Generally,

the strategy  is to release water from storage  reservoirs at times when the listed stocks are in

geographic  locations where they encounter the augmented flows.

In the Snake River Basin, regulated  water enters the system at two locations, below Hell’s

Canyon Dam on the Snake River and below Dworshak Darn on the Clearwater  River. The

preponderance of regulated  water available for fish passage is provided by Dworshak Reservoir.

None of the listed stocks  are located in the Clearwater  drainage.  Thus,  listed stocks  must migrate

to below the confluence of the Clearwater  and Snake Rivers before they are fully exposed to

augmented  flows. The confluence of the Clearwater  and Snake Rivers  forms the approximate

upper boundary  of the Lower Granite Reservoir. Determining  when stocks  are in the vicinity of

Lower Granite Dam and Reservoir  is a chief consideration  in requesting  flow augmentation.



Figure  1. Locations of key tributaries used in the evaluation  of real-time predictions  of

outmigration  timing.
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It is possible to identify the presence of wild T&E populations  in this reach. Since 1988,

wild salmon  have been PIT-tagged as parr while residing  in their natal streams.  The majority  of

PIT-tagging  has been conducted by investigators  at the National  Marine Fisheries  Service, Idaho

Department  of Fish and Game, Oregon Department  of Fish and Wildlife, and the U.S. Fish and

Wildlife  Service. The detection of tagged individuals  at Lower Granite Dam provides  a measure

of the temporal and spatial  distribution of each wild population.  Investigators  have described the

migrational  timing  for spring/summer chinook (Mathews et al. 1992, Kiefer  and Forster  1992).

fall chinook  and sockeye (FPC 1992). However, there have been no quantitative  measures or

procedures developed that permit fishery and water managers to confidently predict the proportion

of any population,  or assemblage of tributary populations,  that  have arrived at the index site in

real-time. Nor has it been possible  to forecast  elapsed time to some future percentile  in a migration.

There is a critical need for such capability,  since stored water volumes  are limited  and it is

advantageous to weigh water allocation to coincide with the presence of an ESU,  some population

within the ESU, or to equitably allocate water among ESUs.

The objectives  of this investigation  are as follows:

1. Describe the variability  in the shape  of the passage distributions  at Lower Granite Dam

for tributary  populations,  assemblages  of populations,  and the composite ESU.

2. Based on historical  passage distributions,  determine if it is practical  to predict in real-time

the proportion of a population,  or assemblages  of populations,  that have arrived at the

index site.

3. Forecast  dates at which specified  percentiles  of the population  distribution will occur.

4. Define  the precision  associated  with the predictions  or forecasts.



Methods

Data Sets

We first  surveyed all tributary  and mainstem populations  of wild salmon that have been

PIT-tagged  in any year. Marking  activities  were first  initiated in 1988, at least for some stream

populations  of spring/summer  chinook.  For a few populations,  migrational  timing  data are available

for as many as six years, 1988-1993.  Populations of fall chinook and sockeye salmon  have also

been PIT-tagged  over this period. However, our analyses  treat only spring/summer  chinook  at

this time. Sockeye have simply been tagged  in far too few numbers to confidently describe  the

passage distribution at Lower Granite Darn. To illustrate,  in 1991-1993,  only 10, 11, and 6

PIT-tagged  Snake River sockeye, respectively,  were detected passing  Lower Granite Dam.

Subyearling  fall  chinook residing  in the Snake River between Hell’s Canyon Dam and Lower

Granite  Dam have been PIT-tagged since 1991.  However, at this time, some of the tag/recapture

designations  in the PITTAGIS  system are uncertain  (Carter Stein, personal communication,  1993).

The database manager is currently resolving and correcting any errors. Once those files are

corrected, we will examine  those data.

Spring/Summer Chinook: Snake River  populations  of spring/summer chinook migrate

seaward as yearlings. During their first  summer, they still reside in natal streams and do not

migrate seaward until the following  spring. Since 1988,  several fisheries  investigations  have

PIT-tagged  chinook parr in their natal streams  for a variety  of purposes. The greatest  effort  has

been expended by the National  Marine Fisheries Service (NMFS),  Oregon Department  of Fish and

Wildlife (ODFW), and Idaho Department  of Fish and Game (IDFG).  Table 1 details the numbers

of wild chinook tagged throughout the Snake River drainage  since tagging efforts  were initiated.
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Table 1: Locations,  numbers and years of tagging of wild spring chinook  in the Snake River

drainage.

Migration  Year

Tag Site 1987 1988 1989 1990 1991 1992

Valley C
Redfish L C
Huckleberry C
Fourth  of July C
Alturus L C
Petit L C
Pole C
Smiley C
Frenchman  C
Pahsimeroi R
S$.; R E FK

Salmon R E FK W
Salmon R N FK
Lemhi River
Lead Ore Creek
Loon C
Bear Valley C
CaDehorn C
Marsh  C
Elk C

Big C
Rush C

2lE cc

Chamberlain  C
Chamberlain  C W F

g;m.sy; S FK

Lake C
Johnson C
Salmon R
Imnaha R
Catherine  C

Lostine R
$rn;fa Ronde  R 

We;;aR”  S FK

?

??

?

?

?

?

?

?

?

?

?

?

?

?

3

2248
0

ii
410

2221
2182

658
0

2523
1211

0

0
2993

2512
0

:0
1043

ii

x

ii

00

ii
0

155;

251:
16

2035

i
2515

00

237:

00
30

2004
0

84
0

ii
0

1031
12

ii
407

20:

20;

53;

:

i

:i
861
247
726

i
0

0
0

992
1018

i
533
334

1013
1017

0

iii
0

969

18:

1:;
0

t
575

55:
312

0

8:;

0

%
981
462

1008

00
210

338
1065
1031
1013

:
2182

844
940

1107

i

i

1028

ii
216
382
184

i
561

1042
845

I2
513
535

0

251
1017
206

1165
628

733

10:;
714

52

1E

64:
1385
1252
1107

1015

964
196
569

1003
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Table 2 summarizes PIT-tag  detections  at Lower Granite Dam during the spring following  tagging.

Recall that these  populations  are tagged as subyearling  parr in their first  summer post-emergence,

and do not migrate seaward until the following spring  as yearlings.

In addition to the tagging  activities  conducted in natal streams, some fish  were intercepted,

tagged, and released at traps placed below the confluence of several tributaries.  We did not consider

those fish in this investigation  for two reasons. First,  the trapped  sample reflects  a mixture  of

several individual populations  in unknown proportions.  Secondly, in some years and locations an

unknown number of hatchery fish may have been included in the trapped sample.

Analytical Procedure

Overview

The evaluation  of the ability  to predict  the real-time outmigration  timing  of wild spring

chinook smolt was based on PIT-tag  releases  from tributaries  that  resulted in a minimum of 3

years  of at least 30 detections per year at Lower Granite Dam (Table  3). Because  release and

detection numbers were often small or nonexistent  at some tributaries  for some years  (Tables  1

and 2). data from nearby tributaries  were pooled to form composites. Table 4 identifies those

composites, the tributaries  used in their formulation  and years of available data.

For each population, we described the empirical cumulative  distribution finding (cdf) of

PIT-tag  detections  at Lower Granite  Dam for each year of available data. The resultant  passage

patterns  for the historical  cumulative  distributions  were used as a template to characterize each

population.  In real time, a cumulative  distribution cannot  be constructed  until the end of the

outmigration. Instead,  the real-time distribution  is compared to the pattern  of historical  cdfs by

fitting the observed part of the cdf to various  proportions  of the historical  data. The segment of



Table 2: Number of PIT-tags  detected at Lower Granite  Dam for wild spring  chinook  listed

by location and year of detection.

Migration Year

Tag Site 1988 1989 1990 1991 1992 1993

Valley C
Redfish  L C
Hucklebery C
Fourth  of July C
Alturus  L C
Petit  L C
Pole C
Smiley C
Frenchman C

Pahsimeroi  R
Salmon  R E FK
Herd C
Salmon  R E FK W
Salmon  R N FK
Lemhi  River
Lead Ore Creek

Loon C
Bear Valley C
cfrw;o;n C

Elk C
Big C
Rush C

::1rz cc
Chamberlain  C
Chamberlain  C W F

ga-gn; S FK

Lake C
Johnson C

Salmon  R
Imnaha  R
Catherine  C
Lostine R
Feyapa  pnde R

‘A$;;~;  S FK

0

ii

i

00

277

0

0

0

i
0
0

65

ii

2:
0

;
15

1
57

0
0

I

:

iii
0

t

:

:

1;;
51
0

75
73

0

0
242

0
0
0

77

:

:
0

iii
0

00

:

0

:

9’:

17:
1

145

:
168

0
0

16;

ii
7

161
0
8

i
0
0

0
0
3
0

0

z4

zz

70

i
0 .

ii

2

:,

9
19
77

90

0
0
0
0

3ii
6
1

ii

00
14

0

13;

ii
67
36
57

ii
24
13
47

:1

ii

66
94
67
92

0
0
0
0

3i
ii

2
00

49

49;

::

ii;

ii’:

1::
42
65

6i
28

0
1

45
173
102
130
93
23



Table 3: Individual streams used in the evaluation  of the ability to perform real-time  predictions

of outmigration  timing and the years  of PIT-tag  releases  from 1988-1993 used in the

analysis.

Tributary
Years of

Data

Catherine Creek (CATHEC) 3
Lostine  River (LOSTIR) 3
Secesh river (SECESR) 5
Marsh Creek (MARSHC) 4
Valley Creek (VALEYC) 5
Imnaha  River (IMNAHR) 4
Bear Valley Creek (BEARVC) 4
Alturus  Lake Creek (ALTULC) 6
Big Creek (BIGC) 4
Elk Creek (ELKC) 3
East  Fork Salmon River (SALMON  R E FK) 3
South Fork Salmon River (SALMON  R S FK) 3
Salmon  River (SALMON  R) 4
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Table 4: Composition of streams used in the evaluation of the ability to perform real-time

predictions of outmigration timing and the years of PIT-tag releases from 1988-  1993

used in the analysis.

Region
Years of

Data

Upper Salmon
Valley C
Redfish L C
Huckleberry C
Fourth of July C
Alturus L C
Petit L C
Pole C
Smiley C
Frenchman C
Beaver C

Pahsimeroi
Pahsimeroi R
Salmon R E FK
Herd C
Salmon R E FK W

Upper Middle Fork Salmon
Loon C
Bear Valley C
~.f$o;n c

Elk C
South Fork Salmon

Salmon R S FK
Secesh R
Lake C
Johnson C

5

3

4

5
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the template that most closely matches the shape  of the current real-time distribution then forms

the basis  for predictions and forecasts. Based on the similarity  between those  shapes,  we predict

the population’s  current temporal position in the passage distribution, and forecast  the expected

time to reach some specified future position in the migration. Repeated  analysis provides  daily

predictions  of outmigration status and trends throughout  the outmigration  season.

Characterizing Historical Outmijpztion  Pattems

This section is a synopsis  of the statistical  and analytical  procedures employed in this

investigation. Detailed  procedures are presented in a technical  appendix  accompanying  this text

(Appendix  A).

Cumulative Passage Distribution: Treating  each population  separately,  the first  task was to

construct  a cumulative passage distribution for each year of data. The distributions  were then

normalized by expressing  them as the percentage of the total number of tag detections  each year

(Fig. 2). These distributions often display  abrupt  changes, and for the purpose of constructing the

template, it is analytically advantageous to smooth the distributions.

Smoothing the Passage Distributions: We explored two different smoothing procedures.  One

was based on running averages passed over the data one to several times (Fig. 3). The second

approach involved  the use of neural nets, a sophisticated  pattern recognition  procedure, employing

artificial intelligence processes. Each smoothing procedure yields a separate set of smoothed

distributions.

Temporal Alignment of Cumulative Passage Distributions: Our interest  is the shape of the

distributions.  However, the date when the smolt  migration  begins each year is not consistent,  and

this affects  the alignment of the distributions  and increases the year-to-year  variation  in pattern.

The initiation of migration  is regulated by environmental  conditions  that influence the onset of
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Figure  2. Illustration  of (a) cumulative counts and (b) cumulative  relative  frequency

distribution of PIT-tag  detections at Lower Granite  Dam for Secesh River, 1989- 1993.
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Figure 3. Illustration  of the derivatives  of cumulative relative frequency distribution of PIT-tag

detection at Lower Granite Dam for Secesh River,  1989-1993. Graphs  illustrate

(a) raw data, (b) 5-day running averages, and (c) 3-pass,  j-day running averages.

Numbers  along x-axes are days since the first fish count.
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smolt development  (Wedemeyer et al. 1980). The most notable  variable in this regard is probably

water temperature. The sooner river water warms, the sooner fish will initiate downstream  migration.

Depending  on climatic  conditions,  this will vary from year to year. This variation  can complicate

the analysis.

The first  prediction  algorithm  developed does not depend on synchronizing  the timing of

the outmigration.  Instead, the identification is based solely on the shape of the empirical  cumulative

distribution functions  over all years.  The second approach uses  another procedure which attempts

to characterize the average annual pattern  (template) for comparison with a current year’s data,

requires  synchronizing  the timings of the outmigration. The latter approach uses the peak rate of

change in detections  (i.e., maximum slope)  to synchronize  patterns  over years. This maximum

slope corresponds  to synchronizing  the maximum value of the first  derivative of the cumulative

passage distribution curve. Fig. 4 illustrates  this synchronization  for Secesh River, 1989-1993.

Characterization of Shape: The shapes of the cumulative passage distributions,  for the

individual years, define the passage pattern for a specific  population.  The difference in shapes

among years defines  the variability  associated with the distribution. The shape of the arrival

distributions can be represented  by the sequence of slopes, or tangents,  along the distribution

(Fig. 5). Any specific  segment of the distribution can be represented  by a specific  sequence of

slopes associated with that segment. The sequences of slopes then become the actual measures  used

in predictions.

Decision Rule: A least-squares  criterion was established to identify the most likely  estimate

for the percent of the run. The objective function can be written as

ss = t f (SLOPE,-SLOPE,,)2
t-1 /‘I

(1)
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Figure  4. Synchronized  first derivative curves for the cumulative relative frequency

distributions  for PIT-tag  detections  at Lower Granite Dam for releases from Secesh

River.  1989- 1993.
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Figure  5. Illustration  of characterizing the cumulative  relative  frequency distribution by

(a) slope at strategic  percentages,  (b) continuously  over entire (cdf) based  as a curve

of first  derivatives.
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where

SLOPE ,, = slope at the jth percentile (j-l.....%) for the ith historical year (i- l,...,Y);

SLOPE, - slope  at the jth percentile (J = 1, . . . , %) for the current year’s data.

The summation  used in calculating  the sum of squares  (Eq. 1) was calculated over all historical

years for one predictive algorithm  or simply  over the average historical  cumulative curve for other

algorithms.  The choice of percentage  (%) in the summation (Eq. 1) that  minimizes  the overall SS

is the prediction of the percent of run to date. The summation is calculated  over equal intervals

of percentage  of size (%/d) , over the range 0 to %, where d equals  the number of data in the

run to date for the current year.

Measures  of Predictive Performance: A bootstrap (Quenouille 1956) approach  was used to

measure the precision and accuracy  of the predictions  of percent of the run to date. Using the

historical  data, n - I of the years of data were used to predict the run timing of the remaining

nth year. All possible  combinations  of n choice n - I year were analyzed.  The performance among

the historical  years  provided  a measure of the reliability of the prediction algorithms.

Two measures  of performance were computed for all analyses.  The first  measure was the

mean squared error (MSE) defined as

M S E ( % )  =  '-'
(Y- 1)

(2)

where

%, = predicted percentage  using the computer algorithm  for the ith historical  year

(t=l.....Y);
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% - actual  percentage  of the cumulative  relative  distribution of PIT-tag  detections  at

Lower Granite Dam.

The MSE can be computed for any specified  %  (e.g., % = 5, 10, 15 ,... 95).  The expected value of

an MSE is

E  ( M S E )  = u*+ bias*

where a* is the variance  of the prediction  method. The units of MSE are in squared - %  A

limitation  of MSE is that it is expressed in squared units, and its square-root  is not directly

translatable  to a standard  deviation  plus bias. As such, another measure of predictive error that

was computed  was the mean absolute deviance (MAD) defined as

fl%-%I
M A D ( % )  =  ‘-* y . ( 3 )

The MAD also measures accuracy and precision of the prediction algorithm,  but expressed in

standard  units of percentage.  Approximately  95% confidence intervals  for a prediction were based

on

%*2MAD(%) .

The MAD was introduced ad hoc and replaces usual standard  deviation  (std).  It could be proved

that MAD is close to std. being a slightly  weaker criterion.
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Comparison of the performance of alternative  predictors  or performance across various tributaries

were based on the average value of MSE (%) or MAD (%) across various percentages  of the run.

Averages were calculated at intervals  of 5% from 20% to 95% of the run.

Predictions

A software  package has been developed to calculate  predictions  and forecasts. In real time,

as PIT-tagged  fish in the population  are detected at Lower Granite, a cumulative  passage  distribution

is constructed.  As the distribution is updated  daily, the shape changes. On any day, the shape of

the distribution can be defined by the sequence of slopes accumulated  up to that  point  in time.

The predictive program identifies the segment of the historical  arrival distribution that  most closely

matches the shape  of the real-time  distribution  using the least squares  criterion (Eq. 1). The

computer program also computes the performance  of predictive algorithm  using the bootstrap

approach  across  historical  years. A graphical  display of prediction versus expected value is presented

(Fig. 6) for a selected tributary  across  the entire  season. In addition, the algorithm  reports the

MSE and MAD values for the percentage  predicted by the program.

The pattern  of predictions across  the season as the user repeatedly enters the software  program

can be requested (Fig. 7). A final  graphical  display  superimposes the projected cumulative

distribution for the current year over historical  patterns  including approximately  95% interval

estimates  (Fig. 8).
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Figure 6. Illustration  of jackknifing  results  for the Secesh River population comparing  predicted

percentiles  versus  actual percentiles  across years  of historical  data. A perfect

prediction would be plotted on the 45-degree diagonal.
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Figure 7. Illustration  of daily  outmigration  predictions  based  on the historical  pattern.  Bars

on the graph show approximate  95% confidence intervals  of estimates.
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Forecasting

Once the current position in the migration  is predicted, it is possible  to forecast  how many

days in the future to some specific  percentile (Fig. 8). Forecasts  are based on elapsed time between

percentiles  as calculated  from the average cumulative  distribution  across years.  Thus,  elapsed times

are added to the prediction of the percentage  of the run to date.

Results

Alternative  Predictive Algorithms

Research to develop reliable predictors  of outmigration  timing had to rely solely on the

historic  patterns  of PIT-tag  detections  at Lower Granite Dam. Ambient  data on tributary  flows

and temperature patterns  have yet to be identified. As such, the predictive algorithms  relied on

pattern recognition capabilities.  Two alternative algorithms  were developed, varying in the degree

of robustness  and specificity incorporated. The algorithms differ  in the degree of smoothing

employed, whether synchrony  of run timing  across years was imposed, and whether the decision

criterion was applied  across all historical  years or an average historic pattern.  Table 5 summarizes

the properties of the two alternative  algorithms  investigated.

Performance of Predictors

Table 6 summarizes the MAD averaged across percentiles  (i.e. 20, 25, 30, . . ., 95%) on a

stream and composite basis for two of the alternative  algorithms investigated.
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Table 5: Comparison  of procedures used in alternative algorithms  to predict the timing of

spring  chinook smolt  on the Snake River.

Approach Method 1 Method 2
(Least  Squares) (Synchronization)

Data Smoothing 5-Day, 3-Pass 5-Day,  3-Pass

Synchonization None;  doesn’t  make a
difference.

1st significant  peak of 1st
derivative

Across-Year  Averaging Day of the run averaging Average synchonized  curve

Decision Criterion Least  squares;  over all years
using cumulative  %

Least  squares;  over average year
using day of run

Primary  Prediction % with the highest  likelihood % with the highest  likelihood



Table 6. Values  of the mean average deviance (MAD)  averaged across  years and within seasons

(i.e., 20, 25, 30, . . ., 95%)  on a stream or composite  basis for two alternative real-time

predictors.

River System

Average MAD

Method #l Method #2

Catherine  C
Lostine C

E2 c”
Valley C
lmnaha  R
Bear Valley C
Big C
Elk C
Salmon R
Salmon R E Fk
Salmon R S Fk
Upper  Salmon
Pahsimeroi
Upper  Middle Fork Salmon
South  Fork Salmon R

If.: 152:os

ii:: ;::

11:1  192.89 10:2  12

21.09.2 ‘99.20
16.8 15:3
8.3

z-z
ii:!

12.9 Ii-32
10.9 9.1
5.9 5.7

Average 10.3 9.6
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Figure 8. Illustration  of graphical  display  of predictions  of real-time status of outmigration.

Bold line depicts prediction of cumulative  run proportion  to date versus historical

trends. (a) Dashed line is forecast  of remainder  of run based on historical  time

between percentiles.  (b) Vertical  bars are approximate  95% confidence interval

estimate of percent  run to date.
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Among the two alternative  algorithms,  the second method, based on identifying an average

annual  arrival pattern,  performed  best. This method has an average overall MAD value of 10.3%

(Table 6). achieved when additional  smoothing  has been added to the initial  data and decision-making

function SS.  Both algorithms  have almost the same performance,  but the second method is still

faster  and preferable in most cases. In 14 of 16 river systems investigated,  the second method had

the smaller MAD than the first. We therefore recommend this latter method of predicting the

outmigration  time of wild Snake River stocks.

For 10 of the 16 river systems evaluated  (Table 6). the average MAD value was less than

10% for both methods. The tightened  predictions  occurred at Catherine  Creek, Secesh  River, and

South Fork Salmon River  with average MAD values  of 4.2%, 5.3%. and 5.5%, respectively.  The

worst ability to accurately  predict outmigration timing  was at Big Creek with an average MAD of

19.0%. Surprisingly,  the ability  to accurately predict the outmigration  timing (as measured by

average MAD) was not correlated  with either years of data (r = -0.233,  p > 0.10) or mean number

of PIT-tag  detections  (r = -0.175,  P > 0.10) at Lower Granite  Dam (Table  7). Instead,  the accuracy

of predictions seems more related to the consistency  of the pattern  of the empirical cdf. Plots of

predicted versus  actual percents of run-to-date for each river system  investigated  are included in

Appendix  B. Separate lots are enclosed for both prediction  algorithms investigated  (Appendix  B).

Discussion

This progress  report summarizes initial  attempts  at developing a means to predict in real

time the migration  status of wild spring  chinook  smolt in the Snake River.  The approach used

PIT-tag  detections  at Lower Granite  Dam of wild runs of Snake River  spring  chinook.  Pattern

recognition  procedures were developed, based  on historical  cumulative  relative  frequency

distributions of detection  at Lower Granite Dam.



Table 7. Relationship  between average MAD, years  of historical  data, and mean number of

detections at Lower Granite Dam.

River System Average MAD Years of Data Mean No. of Detections

Catherine  C
Secesh R
Salmon  R S Fk
Soit;  Fork Salmon

Valley C
u&T;eyoyn

U&i piddle Fork Salmon

Saa~~z~  “R E Fk

Bear Valley  C

4.2

Z:i

;:;

E
1 l-.2
9.1
9.5
7.6

11.6
10.2
15.3
11.6
19.0

3
5
4

z
5

z

f

:

f

:

82.00

232.35
101.00

fz%
43:33

125.25
67.75

115.75

lk%
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Alternative  predictors  were developed,  based on various  procedures to smooth the historical

trends,  synchronize  the onsets of the migration,  and the degree of summarization  of historical  data.

Both methods shared the same least squares decision rule that compared slopes of the arrival

distributions  of past years  with real-time  data. Method #2 is generally recommended for

outmigration  predictions  for all 12 rivers (Table  3) and 4 composite river systems (Table  4)

investigated.  The method is anticipated to have an average of 9.6% (MAD) across  river stocks and

throughout the season. At the end of the spring  1994 season, an evaluation  of the performance

of the predictions  versus  actual percentiles  should be conducted. Historical  error rates should be

compared with the error rates observed this first year to determine  the reliability of error predictions

and associated confidence intervals.  The 1994  PIT-tag  data should then be incorporated  into the

historical  database for subsequent  years.

This investigation  also identified a current weakness  of existing  PIT-tag  data (Tables  1 and

2). much more consistent  PIT-tagging program should  be implemented.  Annual  tagging on key

river stocks  should institutionalized  with sufficient  numbers to adequately  characterize  outmigration

patterns  (i.e., detections/year). Furthermore,  PIT-tag  programs  should be initiated  at key rivers

that historically  have received little  attention.
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Appendix  A:

Additional Details on Predictors  of Outmigration Timing



Forecasting  Expert Systems and Artificial Intelligence

During  recent years, ideas  about flexible  decision-making  algorithms  based  on the learning

from a given training  dataset became more and more popular among professionals  in many fields.

The applications  are widespread,  and the fruits  of these  applications  are being reaped by many

from diverse  fields. This methodology  has become an alternative  to modeling some physical  and

nonphysical  systems.  One of the reasons  for this is that absence of full information is not as big

a problem in neural networks  (NNET) as it is in other methodologies. To think that  the modeling

of NNET is an attempt  to mimic human learning is somewhat exciting.  Below we describe how

our forecasting  algorithm uses a “fuzzy logic” approach to build a real-time analysis  and forecasting

software.  One of the approaches  under consideration  is to use NNET with the suitable  architecture,

train  it on the sets  of historical  data, and store the parameters of the NNET. The same NNET

applied  later to the similar  data is able to recognize the memorized pattern and even predict the

behavior  of the stochastic system of fish outmigration. In a sense,  NNET algorithms  are closer to

an intelligent learning system than to the multivariate  regression analysis.  Another improvement

to the forecasting  of the outmigration process  could be done by implementing  a “fuzzy”  mechanism

of learning,  based on some assumptions  or rules. In our case, it corresponds  to an intelligent

algorithm  of the identification of the first  significant  peak (Fig. 3) in the smoothed count function.

The term “fuzzy”  means the use of a flexible  (changing during the learning  stage) criteria used for

the final decision. Below we will describe some details of the fuzzy algorithms  used in our

forecasting  software.

Prediction Algorithms Based on a Least Squares Decision-Making Function

To predict  the proportion  of fish passed during the current run, all of our algorithms  have

the same general approach. First,  we smooth  and normalize the historical  and current years’

cumulative distribution function (cdf) of fish detections. Then,  the first derivative of the smoothed

and normalized functions  are calculated.  The smoothing routine  and elimination of noise in the
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initial  data are probably  the most crucial part of data preparation.  More advanced algorithms,

including those  that are presently  under development,  should use NNET and fuzzy logic to combine

the years  of historical  data into one aggregate curve and take into account the real-time changes

in flows, temperature, and water spills at different  dams. We then use a variety  of methods to

compare the current run to the different  portions of the aggregate historical  curve (Fig. 5B), or

different  years’ patterns  separately,  and finally  choosing the portion  of historical  data that  most

closely (in the least squares sense)  resembles the current run. The steps of the algorithm  are as

follows:

1. Smoothing. We found that randomness in the daily count data (Fig. 3a), even after  a

single 5-point smoothing,  adversely  affects  the performance of the program. All the algorithms

we developed have been run and tested on thrice (5-point moving average) smoothed data. Using

triple  smoothing consistently  improves results  for any tried algorithm,  and predictions  are usually

distinctively better  than those  for the once and twice smoothed datasets.  We gained no perceivable

benefits  from smoothing  the data further  or applying  a sophisticated  Backpropagation  Neutral

Network with self-learning  mechanism. In the latter case, NNET “oversmoothes” the initial  empiric

data and starts  to obscure actual features  of the outmigration  (as opposed  to noise  elimination).

The NNET method should be reserved for the most noisy data and will be employed fully in our

future development  of a forecasting  system. Definitely, the same level of prediction could be

achieved with the used NNET at the expense of computation  time.

2. Computiog Historical Aggregates. We combined several years  of historical  data into one

historical  average pattern  that serves  as a template for comparison with the real-time migration

pattern. The first  method that compares each historical  year individually  to the current year and

then computes the most probable percentage of the run based  on least squares  criterion was described

earlier.  Substantial  improvements  in the prediction  (significant  decrease of MAD) with this method

were achieved by thorough  data preparation, data interpolation,  and averaging  over days

corresponding  to the same percentile  in different  years.



The second method is based on a heuristic  approach, that  creates an average (over years of

observation)  template  that later is used for predictions  of the current real-time pattern.  Simple

averaging over the years of data on a day-by-&y  basis  did not produce much of an improvement,

as long as runs tend to start  at different dates  from year to year. The largest improvement  was

achieved by synchronizing  each year according to a chosen paradigm,  and then averaging  the

corresponding  synchronized  data to form the historical pattern.  Our mechanism of synchronization

of different  years was based  on the employment  of a fuzzy-logic flexible  algorithm  that picks the

first  “significant”  peak in first derivatives  of the cumulative distribution function (cdf) of fish

count.

Other approaches we investigated  included synchronizing  years by the first day of detection,

synchronizing  by the date at which 50% of the fish have passed,  and synchronizing  by the center

of mass of the detection graph (very similar  to the 50% method). Synchronizing  by the center of

mass  was also a good approach that was robust and stable (producing  the least of apparent  outlien).

One of the problems with synchronization  and averaging the data is that peaks in the derivatives

of cdf are often obscured or cancelled  when the same features  occur on different  Julian dates  in

different  years. We determined that finding and synchronizing  on the “most  significanr peak is

important  in the day-by-day  averaging  approach.

The problem of finding the “most  significant” peak is that  the peaks van very in relative

amplitude,  width, and timing  among years. Choosing  the overall highest  peak does not always

identify the first “significant”  peaks, because the relative location of the highest  peak sometimes

varies widely from year to year. Misalignment  of the data results in high level of instability  in

the predictions  and large outliers. We developed the following criteria for the choice of the right

peak:

a. Timing. The “significant”  peak must occur early in the run. A late peak does not provide

coherent data for the predictions at early stages.



b. Size. The “significant”  peak must be large enough. Small peaks are usually produced

by noise from detections  and create large outliers.

c. Consistency. Chosen  peaks  should occur at similar  temporal locations from year to year.

These criteria  are definitely a “fuzzy set.” Computer  software was developed using these

criteria. The best results were obtained by choosing the first  peak containing  at least 20% of the

total fish  in the run before the midpoint  of the run. In other words, we start with the assumption

that the peak sought contains 10% of the total fish in the run and gradually  relax this criterion,

accepting  any available  peak by the time that 50% of the fish have passed. This method yielded

very strong predictions  for the rivers and creeks with reasonably coherent  data over the years and

improved predictions for most of the others.

Comparison  of Methods

Both methods use least squares  criterion for the prediction of the proportion  of the run. IO

each prediction method, the decision function SS (sum of the squares  of the difference)  was

calculated  with the aid of Eq. 1 or a similar  one. The basic difference between these methods was

in how the summation over the years  Y was performed when SS functions  were calculated.  The

first  method used Eq. 1. For the second method of synchronized  pattern,  the summation  over the

years  was performed before the norm of the difference  was calculated,  and a synchronization  was

imposed. That  minor change required  a sophisticated  “fuzzy logic” mechanism of peak “picking”

based  on the observation  that the temporal shape of the year-to-year  pattern  is relatively  stable

with respect to the timing  of the first  “significant  peak” in count.

In order to improve the stability  of the prediction, particularly  near the starting  point  of the

run, an additional bias factor has been incorporated into the algorithm. This factor measures the

number of days between the detection of the first fiih and the last recorded fish in the historical



aggregate and in the current  run. The decision function SS is multiplied  by the ratio of the longer

period over the shorter one. This factor  makes  the minimum in the SS function sharper  and

improves the stability of the prediction.

During the development and testing,  the first  (robust) method was substantially  improved

when some “fuzzy rules” from the second method was employed, and additional  smoothing of the

S S  function was added. The performance  of those two different  algorithms  became fairly  close

when some notable improvements  were added to the robust least squares  method.

Finally,  both methods could be recommended as fairly reliable  forecasters  for the spring  and

summer chinook. In the first stages of the run, the second method is preferable in most of the

cases.



Appendix B:

Jackknife  Results on the Performance

of the Predictors  of Outmigration Timing

[least squares algorithm (Is), synchronized  algorithm (sync)]
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Bootstrap Prediction over Historic Years : Big Creek (sync)
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Bootstrap Prediction over Historic Years : lmnaha River (Is)

9,r

aq-0

c0 (9,E 0

I!!
5
$ t,0

<u -0

9-0
I

0.0
---1 ~~ ~ I 1

0.2 0.4 0.6 0:s ll0

Actual Proportion
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Bootstrap Prediction over Historic Years : Lostine River (sync)
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Bootstrap Prediction over Historic Years : Marsh Creek (sync)
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Bootstrap Prediction over Historic Years : Salmon River East Fork (sync)
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Bootstrap Prediction over Historic Years : Secesh River (sync)
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Bootstrap Prediction over Historic Years : South Fork Salmon (sync)
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Bootstrap Prediction over Historic Years : Upper Middle Fork Salmon (Is)
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Bootstrap Prediction over Historic Years : Valley Creek (Is)
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